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Motivation

Proportional-integral-derivative (PID) con-
trollers are used in many control system
applications. However, most of these controllers
do not use the filter factor as a design parameter.
PID controllers should be tuned as four param-
eter systems using the filter factor as parameter
instead of as a three parameter system.

Introduction

When designing a feedback control loop, certain
performance goals need to be met, such as per-
centage overshoot, peak time, rise time, or set-
tling time when a step input is applied to the
closed-loop system. A common feedback control
loop is the PID controller. In most PID sys-
tems, only the proportional, integral, and deriva-
tive gains are tuned and the derivative filter factor
is either set to a default value or determined ex-
perimentally. However, tuning this filter factor
along with the three gains can improve the sta-
bility and response of the controller. We present
a simple PID controller using this filter factor on
a Quanser servo motor.

Figure 1: Quanser Rotary Servo Base Unit

PID Control System

A typical parallel PID linear closed feedback sys-
tem is shown in Figure 2. R(s) is the desired out-
put and Y(s) is the actual output. The plant be-
ing controlled has transfer function G(s) and the
sensor measuring the output has transfer func-
tion H(s). W(s) is the load disturbance and V(s)
is the external measurement noise. The PI block
denotes the proportional integral control and the
FD block denotes the filtered derivative term.

Figure 2: Parallel PID Feedback System

Equation (1) shows the PID control law. Kp, Ti,
TD, and α are the proportional gain, the integral
time constant, the derivative time constant, and
the filter factor, respectively. This shows that the
system is affected by the filter factor.
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In addition, the filter factor is significant in con-
trolling W(s) and V(s). For example, the load
disturbance sensitivity transfer function is shown
in Equation (2). F(s), which contains the filter
factor, is shown in Equation (3). Therefore, the
filter factor is essential in minimizing the effect of
W(s) and V(s).
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Simulink Design

To show the effect of the filter factor, a PID con-
troller was coded in Simulink. The Simulink file
controlled the Quanser Rotary Servo Base Unit
shown in Figure 1. Figure 3 shows the block di-
agram of the entire Simulink model. Figure 4
shows the actual PID controller, which includes
the filter factor block.

Figure 3: Block Diagram of Quanser System

Figure 4: Block Diagram of PID Controller with Filter Factor

Results

First, the simulation was ran without the filter
factor. The output is shown in Figure 5. Next,
the filter factor was added and the output is
shown in Figure 6. Load disturbance, W(s), was
simulated by adding a sine wave.

Figure 5: Output without Filter Factor

Figure 6: Output with Filter Factor

By comparing Figure 5 and 6, it is shown that
adding the filter drastically reduces noise.

Conclusion

This concept has many uses in industry. For example, the engine of a jet is extremely susceptible to noise.
By designing a control system that accounts for the filter factor, this noise can be significantly reduced.
Also, by optimizing all four factors in the PID controller, a system can be designed to decrease the offshoot
while increasing the settling time. With the correct optimization, the most desired performance goals can
be achieved.


